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The Ring of Polynomials

Z[x1, x2, . . . , xn] =


polynomials

in the variables x1, x2, . . . , xn
with integer coefficients

 .

Example: 3x21 − 2x2 + 5x1x2 ∈ Z[x1, x2].
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The Ring of Symmetric Polynomials

A polynomial is symmetric if it remains the same after
permuting its variables.

Example: x21 + x22 + x23 ∈ Sym3.

Symn =


symmetric polynomials

in the variables x1, x2, . . . , xn
with integer coefficients


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Rings are Modules

From any ring:

addition: p + q multiplication: p · q

...we can form a module by “forgetting” multiplication:

addition: p + q scaling: np, n ∈ Z

...which are like “vector spaces” but over a ring; for us, Z.
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Integer Basis

A subset B of a module M over Z is a basis if
for all p ∈ M, there exist unique finite linear combination:

p =
∑
b∈B

cb · b,

where cb ∈ Z.
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Monomial Basis of the Polynomial Ring

The set of all monomials forms a basis of Z[x1, x2, . . . , xn]:{
xα1
1 xα2

2 · · · x
αn
n

∣∣ α1, α2, . . . , αn ∈ Z≥0

}

Example: x1x
2
3 = x11x

0
2x

2
3 is a monomial in Z[x1, x2, x3].

Each monomial xα1
1 xα2

2 · · · xαn
n is defined by the sequence of its

exponents.
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Compositions index Monomials

A composition of length n is a sequence of nonnegative integers

α = (α1, α2, . . . , αn) ∈ Z≥0
n.

Example: (1, 0, 2) is a composition of length 3.

Notation: xα = xα1
1 xα2

2 · · · x
αn
n .

Example: x (1,0,2) = x1x
2
3 .

The set of all monomials forms a basis of Z[x1, x2, . . . , xn]:{
xα

∣∣ α is a composition of length n
}
.
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Symmetric Monomial Basis of Symn

A symmetric monomial is the sum of all monomials obtained by
rearranging the exponents of a monomial.

Example 1: x91 x
7
2 x

4
3 + x91 x

4
2 x

7
3 + x41 x

9
2 x

7
3 + x71 x

9
2 x

4
3 + x71 x

4
2 x

9
3 + x41 x

7
2 x

9
3 .

Example 2: x41x2x3 + x1x
4
2x3 + x1x2x

4
3 .

Example 3: x1x2x3.

Each symmetric monomial is defined by the sequence of its
exponents in decreasing order. In the examples:

(9, 7, 4), (4, 1, 1), (1, 1, 1)
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Symmetric Monomial Basis of Symn

A partition of length n is a weakly decreasing sequence

λ = (λ1, λ2, . . . , λn) ∈ Z≥0
n

with λ1 ≥ λ2 ≥ · · · ≥ λn.

Each symmetric monomial of Symn is

mλ =
∑

rearrangements α of λ

xα.

Symn has a basis of symmetric monomials:{
mλ | λ is a partition of length n

}
.

9 / 32



Combinatorial
Models for

Key and Atom
Polynomials

Guilherme
Zeus Dantas e

Moura

Motivation

Intuition

Questions

Definitions

Summary

Symmetric Monomial Basis of Symn

A partition of length n is a weakly decreasing sequence

λ = (λ1, λ2, . . . , λn) ∈ Z≥0
n

with λ1 ≥ λ2 ≥ · · · ≥ λn.

Each symmetric monomial of Symn is

mλ =
∑

rearrangements α of λ

xα.

Symn has a basis of symmetric monomials:{
mλ | λ is a partition of length n

}
.

9 / 32



Combinatorial
Models for

Key and Atom
Polynomials

Guilherme
Zeus Dantas e

Moura

Motivation

Intuition

Questions

Definitions

Summary

Symmetric Monomial Basis of Symn

A partition of length n is a weakly decreasing sequence

λ = (λ1, λ2, . . . , λn) ∈ Z≥0
n

with λ1 ≥ λ2 ≥ · · · ≥ λn.

Each symmetric monomial of Symn is

mλ =
∑

rearrangements α of λ

xα.

Symn has a basis of symmetric monomials:{
mλ | λ is a partition of length n

}
.

9 / 32



Combinatorial
Models for

Key and Atom
Polynomials

Guilherme
Zeus Dantas e

Moura

Motivation

Intuition

Questions

Definitions

Summary

Checkpoint

monomials xα symmetric monomials mλ

polynomials
symmetric polynomials

basis basis

compositions

α = (α1, α2, . . . , αn)

partitions

λ = (λ1, λ2, . . . , λn)

λ1 ≥ λ2 ≥ · · · ≥ λn

index index
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New Perspective

key polynomials κα orkey polynomials κα or
atom polynomials Aαatom polynomials Aα

Schur polynomials sλSchur polynomials sλ

polynomials
symmetric polynomials

basis basis

compositions

α = (α1, α2, . . . , αn)

partitions

λ = (λ1, λ2, . . . , λn)

λ1 ≥ λ2 ≥ · · · ≥ λn

index index

Big Picture:

understanding κα, Aα =⇒ understanding Z[x1, . . . , xn]
understanding sλ =⇒ understanding Symn
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Some intuition on κα, Aα, and sλ

This diagram for partition λ = (2, 1, 0) and its rearrangements

α = (2,1,0), (1,2,0), (2,0,1), (1,0,2), (0,2,1), (0,1,2)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3
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Example of sλ

s(2,1,0) = x21x2 + x1x
2
2 + x21x3 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3 .

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3
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Example of κα

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

κ(2,1,0)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

κ(1,2,0)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

κ(2,0,1)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

κ(1,0,2)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

κ(0,2,1)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

κ(0,1,2)
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Example of Aα

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

A(2,1,0)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

A(1,2,0)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

A(2,0,1)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

A(1,0,2)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

A(0,2,1)

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

A(0,1,2)
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Comparing κα and Aα

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3

x21x2

x1x
2
2 x21x3

x1x2x3 x1x2x3

x1x
2
3 x22x3

x2x
2
3
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Littlewood-Richardson Rule

The product of two Schur polynomials is a linear combination
of Schur polynomials:

sλ · sµ =
∑
ν

cνλ,µ · sν , cνλ,µ ∈ Z.

The Littlewood-Richardson Rule states that

cνλ,µ =
number of semistandard skew tableaux

of shape ν/λ and weight µ

Corollary: cνλ,µ are nonnegative integers.

17 / 32
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Product of Key Polynomials in Key Basis

The κα · κβ is a polynomial.
Thus, κα · κβ is a linear combination of key polynomials:

κα · κβ =
∑
γ

cγα,β · κγ , cγα,β ∈ Z.

Research Question: Find a combinatorial description of the
integer coefficients cγα,β above.

Spoiler: The coefficient cγα,β are can be negative.

Example: κ(0,1)κ(1,0,1) = κ(1,1,1) + κ(1,2) + κ(2,0,1) − κ(2,1).

18 / 32
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Product of Key Polynomials in Atom Basis

κα · κβ is a linear combination of atom polynomials:

κα · κβ =
∑
γ

dγ
α,β · Aγ , dγ

α,β ∈ Z.

Research Question: Find a combinatorial description of the
integer coefficients dγ

α,β.

Conjecture (Reiner & Shimozono): The coefficients dγ
α,β are

nonnegative integers.
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Many equivalent definitions

There are many equivalent definitions of key, atom, and Schur
polynomials.

▶ using divided difference operators
(more algebraic approach),

▶ using keys of Young tableaux
(more combinatorial approach),

▶ using skyline augmented tableaux
(another combinatorial approach),

▶ using Demazure crystals and Kashiwara operators
(algebraic and combinatorial approach),

▶ many other equivalent definitions.

20 / 32
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Young Diagram

A Young diagram is a collection of boxes arranged in
left-justified rows and top-justified columns.

partitions ←→ Young diagrams
“How many boxes are in the i-th row?”

Example: λ = (3, 3, 2, 2).

3

⩽

3

⩽

2

⩽

2
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Semistandard Young Tableau (SSYT)

A SSYT is a filling of a Young diagram
with {1, 2, . . . , n} such that
the entries are weakly increasing along rows
and strictly increasing down columns.

Example: An SSYT of shape λ = (3, 3, 2, 2).

1

2

3

4

1

3

4

5

3

5

weakly increase

strictly
in
crease
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Extracting monomials from SSYT

SSYTs −→ monomials

T 7−→ xT

Example:

1

2

3

4

1

3

4

5

3

5
7−→ x1

2x2
1x3

3x4
2x5

2
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Schur Polynomial

For each partition λ, there is a Schur polynomial sλ.

The Schur polynomial sλ is the sum of all monomials
corresponding to SSYTs of shape λ.

sλ =
∑

SSYT T of shape λ

xT .

Fun Fact: The Schur polynomial sλ is symmetric.

24 / 32
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Example of Schur Polynomial

s(2,1,0) = x21x2 + x1x
2
2 + x21x3 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3 .

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

1 3
3

2 2
3

2 3
3
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Key

compositions −→ SSYTs

α = (α1, α2, . . . , αn) 7−→ keyα

Example:

(1, 3, 0, 4, 2) 7−→

1

2

4

5

2

4

5

2

4

4

Attention: Not all SSYTs can be obtained as keys.
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Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.

There is a process to obtain the right key of a SSYT,
by making the entries slightly larger (not defined here).

Example

27 / 32
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T =

5

6

6

4 4

4

5

2 2 3

31 1 1

K+(T ) =
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Atom Polynomial

The atom polynomial Aα is the sum of all monomials
corresponding to SSYTs whose right key is key(α).

Aα =
∑

SSYT T
K+(T )=key(α)

xT .

28 / 32



Combinatorial
Models for

Key and Atom
Polynomials

Guilherme
Zeus Dantas e

Moura

Motivation

Intuition

Questions

Definitions

Summary

Key Polynomial

The key polynomial κα is the sum of all monomials
corresponding to SSYTs with right key at most key(α).

κα =
∑

SSYT T
K+(T )≤key(α)

xT .

Note: “≤” on tableaux is entry-wise comparison.
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Comparing κα and Aα again

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

1 3
3

2 2
3

2 3
3

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

1 3
3

2 2
3

2 3
3
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Product of Key Polynomials in Atom Basis

κα · κβ =
∑
γ

dγ
α,β · Aγ .

Research Question: Find a combinatorial description of the
integer coefficients dγ

α,β.

Conjecture: The coefficients dγ
α,β are nonnegative integers.
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Thank you!
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Product of Tableaux

There’s a way to define the product T · U of tableaux.

Example:
1 2
2 · 1 1

3 = 1 1 1
2 2 3 .
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Applying the definition

Given two compositions α and β,

κακβ =

 ∑
SSYT T

K+(T )≤key(α)

xT


 ∑

SSYT U
K+(U)≤key(β)

xU


=

∑
SSYT T ,U

K+(T )≤key(α)
K+(U)≤key(β)

xT xU

=
∑

SSYT T ,U
K+(T )≤key(α)
K+(U)≤key(β)

xT ·U .
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Approach

Wishful thinking

It suffices to show that the multiset{
T · U :

SSYT T ,U
K+(T )≤key(α)
K+(U)≤key(β)

}
can be partitioned into sets of the form{

V : SSYT V
K+(V )=key(γ)

}
.

Spoiler: It can’t. There are counterexample.

Underlying issue: The structure of tableaux is more strict than
the structure of the polynomials/monomials.
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